
SYNTHESE VON OCTAHYDRO-DIBENZOPHENANTHROLIN-DIONEN UND EINES DODECAHYDRO-DICHIN[2,3-a;2,3-c]ACRIDIN-TRIONS

Günter Ege und Christoph Freund

Institut für Organische Chemie der Universität Heidelberg,

Im Neuenheimer Feld 270, D-6900 Heidelberg

"Lin-trans-Chinacridon" $\underline{1}$ ist als Pigmentviolett 19 ein industriell hergestellter Pigmentfarbstoff. Eine mögliche Vorstufe dazu ist das hydrierte Chin[2,3-b] acridin-7,14-dion $\underline{2}$, das mit Luft unter Vakuumpyrolysebedingungen in $\underline{1}$ übergeführt werden kann¹⁾. Auch das zu $\underline{2}$ isomere Chin[3,2-b] acridin-12,14-dion $\underline{3}$ kann auf diese Weise dehydriert werden¹⁾.

Wir stellten die zu $\frac{2}{2}$ und $\frac{3}{2}$ noch möglichen und bisher unbekannten drei Isomeren $\frac{8}{2},\frac{9}{2},\frac{10}{2}$ sowie das Dodecahydro-dichin[2,3-a;2,3-c] acridin-6,12,18-trion $\frac{11}{2}$ aus neuen Vorstufen $\frac{6a}{2}$ - $\frac{c}{2}$ bzw. $\frac{7}{2}$ her.

Überträgt man die Kondensation von Anilin mit Ethyl-2-oxo-cyclohexancarboxylat $\underline{5}^{2)}$ (20°C, 20 mbar, mehrere Tage über Phosphorpentoxid) auf die drei Phenylendiamine $\underline{4}\underline{a}-\underline{c}$, so erhält man die entsprechenden Diethyl-2,2-bis (phenylendiimino) cyclohexen-1-dicarboxylate $\underline{6}\underline{a}-\underline{c}$. Analog ergab die Kondensation von sym-Triaminobenzol mit $\underline{5}$ Triethyl-2,2;2'-tris(1,3,5-triiminophenyl)cyclohexen-1-tricarboxylat $\underline{7}$. Die Ester $\underline{6}\underline{a}-\underline{c}$ und $\underline{7}$ zeigen im $\underline{1}$ H-NMR (CDCl₃) konzentrations-unabhängige NH-Signale, was auf intramolekulare Wasserstoffbrücken hindeutet.

Die Ester $\underline{6a}$ - \underline{c} und $\underline{7}$ lassen sich in siedendem Diphenylether mit Stickstoff als Schutzgas unter Abspaltung von Ethanol cyclisieren.

Von analogen Bis(phenylen)anthranilsäuren ist bekannt³⁾, daß bei ihrer Cyclisierung stets anguläre Produkte gebildet werden.

So cyclisieren die Ester 6a-g zu Octahydro-dibenzo[b,j] [1,10]phenanthrolin-5,8-dion 8, Octahydro-dibenzo[b,j] [1,7]phenanthrolin-8,14-dion 9 und Octahydro-dibenzo[b,j] [4,7]phenanthrolin-13,14-dion 10, während 7 das Trion 11 ergibt. Daß bei der Cyclisierung von 6b das anguläre Phenanthrolin-dion 9 und nicht lineares 3 entsteht, läßt sich aus der o-Kopplung mit J=7Hz der beiden benachbarten aromatischen Protonen und der Nichtäquivalenz der NH-Protonen mit b=9.43 und 10.7 ppm (in AsCl3) ableiten. In Übereinstimmung hiermit erscheinen im 13C-NMR-Spektrum von 9 für die C-Atome der CO-Gruppen zwei getrennte Signale (Tabelle).

Die Bildung von $\underline{10}$ und nicht von $\underline{2}$ aus dem Ester $\underline{6c}$ läßt sich aus den spektroskopischen Daten von $\underline{10}$ nicht folgern. Dies gelang jedoch am N-Monomethylderivat $\underline{12}^{4}$, das durch Methylieren von $\underline{10}$ mit Dimethylsulfat in DMF/KOH bei 150°C in einer der Methylierung von Acridon zu N-Methylacridon analogen Reaktion entsteht⁵⁾. In $\underline{12}$ sind die beiden aromatischen Protonen konstitutop⁶⁾, was im 1 H-NMR ein AB-System mit der Kopplungskonstanten 3 J=9.6 Hz (aromatische ortho-Protonen) zur Folge hat.

Ebenso läßt sich $\underline{9}$ am nicht verbrückten N-Atom unter Bildung von $\underline{13}^{4}$) methylieren. Dagegen mißlang die Methylierung von $\underline{8}$ und $\underline{11}$; hierfür dürften sterische Gründe verantwortlich sein (vgl. $\underline{13}$).

Die Dione $\underline{8},\underline{9}$ und $\underline{10}$ sowie das Trion $\underline{11}$ sind farblose, hochschmelzende Verbindungen (Tabelle). Während die Dione $\underline{8}-\underline{10}$ in Lösungsmitteln wie Chloroform oder Ethanol schwer löslich sind, ist das Trion $\underline{11}$ als perchelatisierte Spezies bereits in Chloroform löslich. Die Perchelatisierung in $\underline{11}$ findet in der konzentrationsunabhängigen Tieffeldverschiebung der NH-Protonen (δ =15.05, CDCl₃) ihren Ausdruck.

Wir danken dem Verband der Chemischen Industrie für die Unterstützung der Arbeit und der BASF Aktiengesellschaft, Ludwigshafen, für Chemikalien.

	Tabelle		
	Ausb.	Schmp.	Spektroskopische Daten
	8	°c	(6-Werte bezogen auf IMS)
<u>6a</u>	53	86-88	¹ H-NMR (CDCl ₃):1.28(t,6H) 1.58(m,8H) 2.25(m,8H) 4.15(q,4H)
		(Methanol)	7.10(s,4H) 10.25(s,2NH).
<u>6b</u>	68	73-74	¹ H-NMR (CDCl ₃):1.28(t,6H) 1.6O(m,8H) 2.33(m,8H) 4.17(q,4H)
		(Ethanol)	6.66-7.36 (m,4H) 10.69 (m,2NH)
<u>6c</u>	77	166-169	¹ H-NMR (CDCl ₃):1.28(t,6H) 1.6O(m,8H) 2.33(m,8H) 4.18(q,4H)
		(Methanol)	6.99(s,4H) 10.67(s,2NH)
<u>7</u>	49	98-99	¹ H-NMR (CDCl ₃):1.28(t,9H) 1.58(m,12H) 2.33(m,12H)
		(Methanol)	4.18(q,6H) 6.40(s,3H) 10.66(s,3NH)
<u>8</u>	82	400-403	¹ H-NMR (AsCl ₃) ^{b)} :1.90(m,8H) 2.73(m,4H) 3.07(m,4H)
		a)	8.23(s,2H) 11.40(s,2NH) 13C-NMR (CF ₃ COOH) c):168.23
			UV (H ₂ SO ₄) ^{d)} :312(4000), 281(41700), 272(25900)
<u>9</u>	92	340-343	¹ H-NMR (AsCl ₃) ^{b)} :1.95(m,8H) 2.70(m,2H) 2.97(m,4H)
		a)	$3.23 (m, 2H) 7.97 (d, ^3J=7Hz, 1H) 8.60 (d, ^3J=7Hz, 1H) 9.43 (s, 1NH)$
			10.70(s,1NH) ¹³ C-NMR (CF ₃ COOH) ^{b)} :173.54, 167.34
			UV (H ₂ SO ₄) ^{d)} :325 (13700), 312(17700), 275(89100)
<u>10</u>	100	346	¹ H-NMR (AsCl ₃) ^{b)} :1.90(m,8H) 2.74(m,4H) 3.03(m,4H)
		a)	8.23(s,2H) 11.60(s,2NH) ¹³ C-NMR (CF ₃ CCOH) ^{C)} :175.05
			UV (H ₂ SO ₄) ^{d)} :340(7500)Schulter, 302(11800), 252(29800)
<u>11</u>	94	360 zers.	¹ H-NMR (AsCl ₃) ^{b)} 1.97(m,12H) 2.97(m,12H) 15.43(s,3NH)
		(Pyridin)	¹³ C-NMR (CF ₃ COOH) ^{C)} :174.29
			UV (H ₂ SO ₄) ^d ;372(6000), 313(15800), 277(67000)
12		334-336	¹ H-NMR CF ₃ COOH):2.08(m,8H) 3.10(m,8H) 4.33(s,3H)
		(DMF)	7.12 (d, $^{3}J=9.6Hz$, 1H) 8.38 (d, $^{3}J=9.6Hz$, 1H) 14.37 (s, 1NH)
			¹³ c-NMR (CF ₃ CCOH) ^{c)} :175.18, 173.17
<u>13</u>		318-320	¹ H-NMR (CDCl ₃):1.83(m,8H) 2.65(m,4H) 2.75(m,4H) 3.68(s,3H)
		(Methanol)	7.12(d, ${}^{3}J=9.5Hz$, 1H) 8.38(d, ${}^{3}J=9.5Hz$, 1H) 14.37(s, 1NH)
			¹³ c-NMR (CF ₃ COOH) ^{c)} :172.96, 167.13

a) Anilin, dann Propanol b) 90MHz Spektrum c) nur C von CO d) $\lambda_{max}(\epsilon)$ Literaturverzeichnis

- 1) E.I. du Pont de Nemours and Co. (Erf.A.L.Nelson, US Pat. 2,133,071 (12.Mai 1964) C.A. 61, 7018G 1964).
- 2) B.K.Blount, W.H.Perkin jun. and S.G.P.Plant, J.Chem.Soc. 1929, 1975.
- 3) G.M.Badger und R.Pettit, J.Chem.Soc. 1952, 1874.
- 4) Eine Dimethylierung konnte unter den angegebenen Bedingungen nicht erreicht werden.
- 5) I.D.Postescu und D.Suciu, J.prakt.Chem. 318, 515 (1976).
- 6) Zum Begriff "konstitutop" vgl. G.Ege, Naturwissenschaften 1971, 247.

(Received in Germany 5 July 1978; received in UK for publication 24 July 1978)